

Statistical Prediction Models for Network Traffic Performance

Kejia Hu, Alex Sim

Scientific Data Management Research Group Computational Research Division Lawrence Berkeley National Laboratory

AND

Demetris Antoniades, Constantine Dovrolis

College of Computing Georgia Institute of Technology

Outline

- Goal
- Data
- Models
- Results

SDM, CRD, LBNL TIP2013, Jan. 16, 2013

Goal

Statistical Prediction Model

- By analyzing
 - network traffic patterns and variation with the network conditions
 - based on two types of historical network measurement data
- To develop
 - performance prediction models for high-bandwidth networks
 - forecast the future network usage for a given time window and with a given probabilistic error requirement

Data and Modeling

SNMP Data

- Single time series
- With even collecting frequency
- Develop time series model with Seasonal Adjustment

System Time	Bytes
1336350930	7899633.733
1336350960	10665164.133
1336350990	13223715.5
1336351020	12133668.13
1336351050	12647888.6

Data and Modeling

Netflow Data

- Multivariate data
- Random colleting behavior
- Multiple time series
- Develop Generalized Linear Mixed Model

Start time 0930.23:59:37.925

End time 0930.23:59:37.925

Source interface 179

Source IP address xx.xx.xx

Source Port xxxxx

Destination Interface 175

Destination IP address xxx.xxx.xxx

Destination Port xxxxx

Packets 1

Octets 52

5

Modeling - Seasonal Adjustment

- A time series model with Seasonal Adjustment
- Decompose the SNMP data into three components
 - Seasonal component
 - Trend component
 - Random component.
- Enables an effective analysis in
 - prediction
 - tracing the network traffic and quantifying the variation of the network traffic that flows into multiple outlets

SDM, CRD, LBNL TIP2013, Jan. 16, 2013

Modeling - Seasonal Adjustment

Y_t Original series

C_t Trend component

S_t Seasonal component

I_t Irregular component

A_t Adjusted series (without seasonal component)

Multiplicative	$\mathbf{Y}_{t} = \mathbf{S}_{t} \mathbf{C}_{t} \mathbf{I}_{t}$	$\mathbf{A}_{t} = \mathbf{C}_{t}\mathbf{I}_{t}$
Additive	$Y_t = S_t + C_t + I_t$	$A_t = C_t + I_t$
Log-Additive	$Ln(Y_t) = C_{t} + S_t + I_t$	$A_t = \exp(C_t + I_t)$

Modeling - Seasonal Adjustment

 Seasonal adjustments showing original SNMP data and decomposed components with weekly periodicity at NERSC router

Statistical evaluation of periodicity

Fig.6 day.fit-366days

 Seasonal adjustments showing original SNMP data and decomposed components with daily, hourly and minutely periodicity at NERSC router

	Seasonal	Trend	Remainder	
Weekly	43.2%	44.6%	78.3%	
Daily	28.1%	69.1%	53.0%	
Hourly	5.7%	88.5%	29.8%	
Minute	0.1%	98.5%	6.8%	

Evaluation of periodicity

- Identified Seasonality
- Residual Seasonality
- Log transformation

cycle	ident	tified seasoi	nality	residual seasonality		log transformation			
	Yes	no	Yes/total	yes	no	Yes/total	yes	no	Yes/total
Hour	59	119	0.331461	3	175	0.016854	128	50	0.719101
2hour	47	42	0.52809	3	86	0.033708	71	18	0.797753
8hour	6	16	0.272727	0	22	0	19	3	0.863636
10hour	2	15	0.117647	0	17	0	16	1	0.941176
12hour	6	8	0.428571	0	14	0	12	2	0.857143
14hour	1	11	0.083333	0	12	0	11	1	0.916667
20hour	1	7	0.125	0	8	0	7	1	0.875
22hour	0	8	0	0	8	0	7	1	0.875
day	7	0	1	0	7	0	7	0	1
2day	3	0	1	0	3	0	3	0	1
week	1	0	1	0	1	0	1	0	1

Tracing Data Flow

Performance of Prediction

Forecasts from ARIMA(2,1,0)(2,0,1)[4]

Forecasts from HoltWinters

Forecasts from ETS(A,N,N)

Forecasts from STL + ETS(A,N,N)

Forecasts from Local level structural mode

Forecasts from Linear regression model

12

Generalized Linear Mixed Model

$$y = X\beta + Z\alpha + \epsilon$$

- For multivariate data analysis, the behavior of influence from each variable to the prediction is different.
 - Fixed effect: determined influence all the time
 - Random effect: random influence with a certain known distribution
- For multivariate data analysis, the randomness/ uncertainty comes from different sources
 - Error term: the universal variance caused by randomness
 - Random effect: the variance nested within the diversity in the network conditions

Netflow Data

3D Plots suggest random effects.

GLMM on Octets

 How bytes is related to the timestamps and paths it take.

$$y_{ij} = X\beta_j + Z\alpha_i + \epsilon_{ij}$$
 $i = 1, ..., m, j = 1, ..., l$

where m is the number of distinct routes with direction.

l is the number of unique timestamps.

y_{ij} is the observational bytes

 $X\beta_i$ is the mean of Octets for the jth observational time

Zα_i is a random effect associated with the ith route-

\(\epsi_{ii}\) is an error term.

GLMM on Duration

 How long to expect based on the size of the flow, start time of transfer and selected routes

$$y_{ij} = X\beta_j + Z\alpha_i + \epsilon_{ij}$$
 $i = 1, ..., m, j = 1, ..., l$

where m is the number of distinct routes with direction

l is the number of unique timestamps

yii is the observational duration ←

 $X\beta_j$ is the mean of Duration for the certain size of flow

at jth observation time

 $Z\alpha_i$ is a random effect associated with the ith route

\(\epsi_{ij}\) is an error term.

GLMM on Octets

$$y_{ij} = X\beta_j + Z\alpha_i + \epsilon_{ij}$$

Octets ~ SrcP + DstlPaddress + Pkts + (1 | SrclPaddress) + (Pkts | SrclPaddress)

Fixed Effects: β_j Coefficient

Intercept	54938.5706
SrcP (SourcePort)	-1.8182
DstIPaddress (Destination IP address)	4398.0490
Pkts(Packets)	3270.7419

Random Effects: α_i Variance

SrcIPaddress (variance)	3.8210e+08
Pkts (variance)	1.0663e+07

GLMM on Duration

$$y_{ij} = X\beta_j + Z\alpha_i + \epsilon_{ij}$$

Duration ~ **DstP** + **Pkts** + **start.r**

+ (1 | SrcIPaddress) + (Pkts | SrcIPaddress)

Fixed Effects: β_j Coefficients

Intercept	1.018e+02
DstP(Destination Port)	-2.252e-04
DstIPaddress (Destionation IP address)	4.152e-01
start.r	-7.597e-06

Random Effects: α_i Variance

SrcIPaddress (variance)	123.39220
Pkts (variance)	0.17914

Conclusion

- Statistical approach to the prediction models for network traffic performance based on two types of data
- SNMP → Time series model with Seasonal Adjustment
 - Analyzing network traffic patterns
 - By decomposing into seasonal, trend and random components
 - To enable prediction, tracing and quantifying the network traffic
- Netflow → Generalized Linear Mixed Model
 - Analyzing variation with the network conditions
 - By considering fixed effects, random effects and error term
 - To improve accuracy of prediction by involving both universal varaince caused by randomness and variance by changes in the network traffic

More information

- Project web: http://sdm.lbl.gov/apm/
- Contact: kjhu@lbl.gov

SDM, CRD, LBNL TIP2013, Jan. 16, 2013